Q6) Given a vector field $\vec{A} = \rho \cos(\varphi) \ \vec{ap} + \sin(\varphi) \ \vec{a\phi}$. Find the closed line integral $(\oint \vec{A} \cdot \vec{dl})$ around the contour shown in figure 1. Also, use **Stokes's theorem** to justify your answer. Is \vec{A} a conservative field or not? Explain your answer.

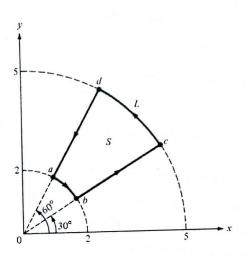


Figure 1: For Q6.

Q7) A uniform plane wave in a nonmagnetic medium has $\vec{E}(z,t) = 100cos(10^8t + 2z) \vec{ay}(\frac{v}{m})$. Find:

- I. The time-harmonic expression of the electric field.
- II. The direction of propagation.
- III. The wave polarization.
- IV. The wavelength and frequency of the wave.
- V. The relative permittivity of the medium.
- VI. The intrinsic wave impedance and the phase velocity.
- VII. The expression of the magnetic field in time-harmonic and real-time forms.

توزيع درجات الامتحان

الدرحة	السوال	الدرجة	السوال
8	4	5	1a
8	5	5	1 <i>b</i>
8	6	5	2a
8	7	5	2 <i>b</i>
3	كتابة الاسم ورقم القيد	5	3

تمنياتي لكافة الطلاب والطالبات بالتوفيق والنجاح في هذا الامتحان وفي كامل المسيرة الدراسية.

استاذ المُقرر: محمد خليفة المزوغي.

Electromagnetics I

Time Allowed: 120 minutes

Fall 2020

Instructor: Eng. Mohamed K. Elmezughi

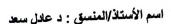
Answer all the following questions and snow your work step by step.
Q1) a) Write down the four Maxwell's Equations in the differential form for the Free Space condition and identify each term.

b) Let the volume charge density within a spherical region of a radius $R = 20$ cm be given by the expression $\rho_V = 4 + 8Kr^2 \left(\frac{c}{m^3}\right)$. Determine the constant K value that will make the total charge in the spherical region equal to Zero. For this value of K , what will be the value of the electric field external to this region? ***********************************
Q2) a) Given the following volume charge density in a sphere of radius 10 m:
$ ho_V = egin{cases} 100 - r^2, & r < 10 \ 0, & r > 10 $
Write the expressions of the electric field inside and outside the sphere. Also, sketch the electric field versus r. ***********************************
b) A line charge density $\rho_L = 3\sin^2(\varphi)$ exists in a ring defined by $\rho = 4$ and $Z = 2$. Find the total charge of the ring.

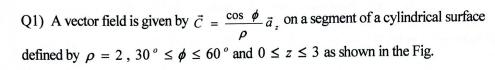
Q3) A charged particle with velocity equals to $\vec{v} = v_x \vec{ax} + 6 \vec{ay} + v_z \vec{az}$ is moving in a medium containing uniform fields. If the electric field is $\vec{E} = 10 \vec{ax}$ and the magnetic flux density $\vec{B} = 2 \vec{ay}$, what should be the velocity (as a vector and a magnitude) so that the particle experiences No force on it (i.e., the Lorentz Force is Zero).

Q4) Given that $\varepsilon_0 \vec{E} = z \rho \cos^2(\varphi) \vec{az} \left(\frac{c}{m^2}\right)$, calculate the volume charge density at $(1, \frac{\pi}{4}, 3)$ and the total charge enclosed by a cylinder of radius $1m$ with $ z \leq 2m$.

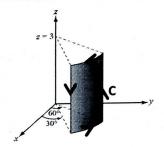
Q5) Given point $P(-2,6,3)$ and vector $\vec{A} = y \vec{ax} + (x+z)\vec{ay}$, express P and \vec{A} in both the cylindrical and spherical coordinate systems.

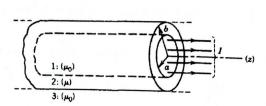

قسيم هندسة الاتصالات

أسئلة الامتحان النهائي لمادة : كهرومغناطيسية 1



لطلبة القصل: الخامس




كلية التقنية الالكترونية College of Electronic Technology - Tripol

- [i] Calculate the curl of \vec{C} [3M]
- [ii] Is stokes's theorem satisfied? and why?[6M]

- Q2) Two constant vectors, $\vec{A} = 2\vec{a}_x + 3\vec{a}_y + 3\vec{a}_z$ and $\vec{B} = -\vec{a}_x 5\vec{a}_y \vec{a}_z$, are located at the point P(2,3,3) in Cartesian coordinate system.
 - [i] Calculate $\vec{A} \times \vec{B}$ [3M]
 - [ii] Determine the magnitude and unit vector of \vec{A}
 - [iii] Express \vec{B} in cylindrical coordinate system[3M]
 - [iv] Find the smaller angle between \vec{A} and \vec{B} [3M]
- Q3) an electric field $\vec{E} = x \sin \omega t \vec{a}_x \text{ V/m}$ is given to exist in a certain region, with a relative dielectric constant $\varepsilon_r = 2$ find the following fields:
 - [i] The electric polarization field \vec{P} .[3M]
 - [ii] The polarization bound charge density ρ_p .[3M]
 - [iii] The displacement flux density \vec{D} . [3M]
 - [iv] The polarization current density \vec{J}_n .[3M]
- Q4) Two extensive homogeneous isotropic dielectrics meet on plane x = 0. For $x \ge 0$, $\varepsilon_r = 2$ and for $x \le 0$, $\varepsilon_r = 4$. A uniform electric field $\vec{E}_1 = 2\vec{a}_x + 8\vec{a}_z$ kV/m exists for $x \ge 0$, there is no free charge on the interface. Find $\vec{\mathbb{E}}_2$ and \vec{D}_2 for $x \leq 0$. [9M]
- Q5) Point charges 1 mC is located at (3, 2, -1) and -2 mC is located at (-1, -1,4). Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field intensity at that point[9M]
- Q6) A very long, nonmagnetic conductor of radius a carries the static current I as shown in Fig. The conductor is surrounded by a cylindrical sleeve of nonconducting magnetic material with a thickness extending from $\rho = a$ to $\rho = b$ and the permeability μ . The surrounding region is

- a) Find \vec{H} and \vec{B} in the three regions. [3M]
- b) Find the \vec{M} field in the three regions. [3M]
- c) Find the volume magnetization current density \vec{J}_m within the magnetic sleeve. [3M]

Electromagnetics I

Fall 2020

Time Allowed: 120 minutes

Instructor: Eng. Mohamed K. Elmezughi

Answer all the following questions and show your work step by step.
Q1) a) Write down the four Maxwell's Equations in the differential form for the Free Space condition and identify each term.

b) Let the volume charge density within a spherical region of a radius $R = 20$ cm be given by the expression $\rho_V = 4 + 8Kr^2 \left(\frac{c}{m^3}\right)$. Determine the constant K value that will make the total charge in the spherical region equal to Zero. For this value of K , what will be the value of the electric field external to this region?

Q2) a) Given the following volume charge density in a sphere of radius 10 m :
$ ho_V = egin{cases} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned$
Write the expressions of the electric field inside and outside the sphere. Also, sketch the electric field versus $m{r}$.

b) A line charge density $ ho_L=3\sin^2(\varphi)$ exists in a ring defined by $ ho=4$ and $Z=2$. Find the total charge of the
ring. ************************************
Q3) A charged particle with velocity equals to $\vec{v} = v_x \overline{ax} + 6 \overline{ay} + v_z \overline{az}$ is moving in a medium containing uniform fields. If the electric field is $\vec{E} = 10 \overline{ax}$ and the magnetic flux density $\vec{B} = 2 \overline{ay}$, what should be the velocity (as expector and a magnitude) so that the particle experiences No force on it (i.e., the Lorentz Force is Zero).

Q4) Given that $\varepsilon_0 \vec{E} = z \rho \cos^2(\varphi) \vec{az} \left(\frac{c}{m^2}\right)$, calculate the volume charge density at $(1, \frac{\pi}{4}, 3)$ and the total charge enclosed by a cylinder of radius $1m$ with $ z \leq 2m$.

Q5) Given point $P(-2, 6, 3)$ and vector $\vec{A} = y \vec{ax} + (x + z) \vec{ay}$, express \vec{P} and \vec{A} in both the cylindrical and spherical coordinate systems.
